#### LLNL Triennial Climate Scientific Focus Area Review

# Human-induced global ocean warming on multi-decadal timescales

**September 05, 2012** 

# Peter J. Gleckler Staff Scientist

**Lawrence Livermore National Laboratory** 







## **Acknowledgements to the team**

P. J. Gleckler, B. D. Santer, C. M. Domingues, D. W. Pierce, T. P. Barnett, J. A. Church, K. E. Taylor, K. AchutaRao, T. Boyer, M. Ishii and P. Caldwell

Experts from the leading observational groups:

NOAA/NODC

CSIRO (Australia)

Japan Agency for Marine-Earth Science and Technology (Japan)

Human-induced global ocean warming on multi-decadal timescales
Published in the July 2012 edition of *Nature Climate Change*, doi:10.1038/nclimate1553

### **Presentation Outline**

- Introduction
  - Evidence of global ocean warming
  - Previous ocean warming Detection and Attribution (D&A) studies
  - O Why does this issue warrant further study?
- Observations and models used in this work
- Simulated and observed variability and trend comparisons
- Our D&A analysis and conclusions
- Plans to further advance our understanding of ocean warming

# Observational evidence of global ocean warming



Numbers in red are % variance accounted for by this trend

Analysis of the World Ocean Database

~ 8 million temperature profiles (0-700 m) used to compute Ocean Heat Content (OHC)

Coherent warming across all major basins

Multiple updates/corrections since first evidence (Levitus et al., 2000, *Science*)

# **Observing systems and sampling**



Based on measurements from bottles, Expendable Bathythermograph (XBTs), low- and high-resolution Conductivity, Temperature, and Depth profilers (CTDs), and most recently Argo floats

ARGO floats providing near global coverage



## Measurement sampling history and "infilling"

#### Infilled temperature estimates

**Domingues 08:** C. Domingues, J. Church, N. White, P. Gleckler, S. Wijffels, P. Barker, 2008 (*Nature*)

**Levitus09**: S. Levitus, et al., 2009 (*GRL*)

Ishii09: M. Ishii and M. Kimoto, 2009 (J. Oceanography)



A key difference between Domingues08, Levitus09, Ishii09 is how they "infill" in areas where there are no measurements

## **Addressing sampling uncertainties**



Why use
Volume Average Temperature (△T)
instead of
Ocean Heat Content (OHC)?

- Enables a fair comparison: sampling models consistently with historical measurements
- Circumvent use of "infilled" data

Both trends and variability appear larger with subsampled data

## Older observationally-based records of in-situ temperature

Spatially-complete case

Global 0-700m volume average temperature anomaly



## Improved observationally-based records of in-situ temperature

Global 0-700m volume average temperature anomaly



\* Expendable Bathythermograph (XBT) "fall-rate" measurement biases identified by Gouretski and Koltermann (2007)

## Improved observationally-based records of in-situ temperature

#### Global 0-700m volume average temperature anomaly



<sup>\*</sup> Expendable Bathythermograph (XBT) "fall-rate" measurement biases identified by (Gouretski and Koltermann, 2007)

## Motivation for an in-depth ocean warming D&A analysis

- Approximately 90% of the heat trapped in the climate system associated with anthropogenicalyinduced global warming is in the oceans and is responsible for thermosteric sea level changes
- Improved observationally-based estimates of temperature changes (correcting for XBT biases)
  - Previous ocean warming D&A studies used older, uncorrected temperature data (e.g., Barnett et al., 2001 and 2005)
- Application of a multi-model D&A approach
  - Previous studies used only one or two models (e.g., Barnett et al., 2001 and 2005, Palmer et al., 2010)
- Evaluate the impact of factors known to be important for OHC D&A
  - Sampling deficiencies
  - Simulation "drift"
  - External forcing uncertainties
  - Estimates of longer time scale variability

## Model results used in this study

#### **Simulations from CMIP3**

(with necessary ocean model output)

|     | Model               | Well-mixed<br>GHGs | Volcanic aerosols | 20Cen Runs |
|-----|---------------------|--------------------|-------------------|------------|
| *   | CCCma-CGCM3.1 (T47) | Y                  | NoV               | 5          |
|     | NCAR CCSM3          | Y                  | V                 | 6          |
|     | CNRM-CM3            | Y                  | NoV               | 1          |
| *** | CSIRO-Mk3.0         | Y                  | NoV               | 3          |
| *}  | FGOALS-g1.0         | Y                  | NoV               | 3          |
|     | GFDL-CM2.0          | Y                  | V                 | 1          |
|     | GISS-AOM            | Y                  | NoV               | 2          |
|     | GISS-EH             | Y                  | V                 | 4          |
|     | GISS-ER             | Y                  | V                 | 7          |
|     | MIROC3.2(medres)    | Y                  | V                 | 1          |
|     | MIROC3.2(hires)     | Y                  | V                 | 3          |
|     | MRI-CGCM2.3.2       | Y                  | V                 | 5          |
|     | UKMO-HadCM3         | Y                  | NoV               | 1          |

7 models with volcanic eruptions (V), 6 without (NoV)

## **CMIP3 Multi-Model Response (MMR) vs. observations**

### Global ocean volume average (0-700M) temperature anomalies



## Our analysis is basin scale

Time (years)

Time (years)



Time (years)

# Basin scale trends (1960-1999): Observed and simulated



# **Structure of our fingerprint (and noise estimates)**



 V and NoV fingerprints (leading EOF): positive loading in all basins



 Noise does not have the same sign in all basins. Differences between V and NoV due to structural differences in the models (e.g., in physics, resolution, parameterizations)

# Multi-model noise estimates (as a function of timescale)



- Pooled model pre-ind control runs
- Structure varies from model to model
- Produced for each basin, then projected onto the V multi-model fingerprint yielding control run pseudo-PCs



Example shown: spatially complete (not subsampled), quadratic control run drift removal

## **Detection and attribution analysis**



#### This Example:

- Spatially complete (infilled),
- V model fingerprint
- 1960 start date
- Cubic drift removal

- V multi-model and OBSAVG results very similar
- Detection time between 1987-1993
- S/N since 2002 > 4

## **D&A** sensitivity tests

Using three biased corrected observational estimates, and multiple models that include the effects of volcanic eruptions, we obtain S/N estimates > 4 (detection at 1% significance threshold) for ~30-40 year timescales. This result is robust to:

- Selection of observational estimate
- Use of infilled or sub-sampled data
- Simulation drift removal technique
- Fingerprint estimate
- Choice of start date (1960 or 1970)

## Could our multi-model noise estimates artificially inflate our S/N results?

- Our ability to test the longer timescale variability of simulated \( \Delta T \) is limited by the historical record of measurements
- We compute non-overlapping linear trends on 5 and 10 year time scales, and
- Pool basin results to compute a space-time standard deviation
- This <u>variability metric</u> is computed for observations and simulations, for both the infilled and subsampled case

Example: for the 10 year time scale, there are:

- four non-overlapping trends (<u>1960-1969</u>, 1970-1979, 1980-1989 and 1990-1999)
- seven basins (including global)
- yielding a sample size of 28

# **Space-time variability**

## "Infilled" case

 Obs 10 yr timescale variability is higher when 1960s data is included



# **Space-time variability**

## "Infilled" case

- Obs estimates sensitive to inclusion of 1960s data
- Average model and obs results are indistinguishable at 10yrs



# Space-time variability "Subsampled" case

- Obs estimates very sensitive to inclusion of 1960s data
- Inconsistency evident when 1960 are included (for subsampled case the two estimates are expected to be very similar since they used the same input data source)



# Space-time variability "Subsampled" case

- Obs estimates very sensitive to inclusion of 1960s data
- Limited evidence suggests that the CMIP3 models may underestimate 10 yr basin-scale variability ~10-25%



# **Summary and conclusions**

#### **Estimating longer time scale variability**

When subsampling model data to be consistent with historical measurements, we find that the CMIP3 models may underestimate observed 10yr space-time variability by ~10-25%.

#### Its impact

However, to refute the significance of our D&A results at the 1% level, models would have to underestimate observed variability by more than a factor of two. We find no evidence of such an underestimate.

#### Ocean warming D & A conclusions

The evolution of the observed basin-scale warming pattern is consistent with our estimated fingerprint (i.e., multi-model response to anthropogenic forcing), but is inconsistent with estimates of longer-time scale variability. These conclusions are robust to a variety of analysis choices and both observational and model uncertainties.

## Future work: Ocean warming D&A

- Extend "model quality" evaluation with CMIP5 simulations, focusing on possible deficiencies in simulated variability
- Further explore uncertainties associated with observations, continuing collaboration with leading observational teams:
  - Argo era and CMIP5 adds 10 critical years to our record
  - Challenges "stitching" both OBS and model data:
    - historical XBT and ARGO era data
    - CMIP5 historical and 5 years of RCP scenarios

#### Alternate approaches

- Revisit space-time D&A methods with CMIP5 (collaboration with Pierce/Barnett, SIO)
- Sub-basin scale analysis (isothermal approach)

# **SUPPLEMENTAL SLIDES**

# **Detection and attribution analysis**

### Example: Spatially complete (infilled), cubic drift removal, V model fingerprint

Signal Trends, Noise Trends, and S/N Ratio: 1970 Start Date



#### **Signal**

- NoV unrealistically large
- Uncorrected obs are unusual
- V and AVEOBS very similar

#### **Noise**

 V and noV broadly consistent decrease with increasing time scales

#### S/N

% significance threshold

- S/N since 2000 > 4
- V and AVEOBS very similar
- Most 'detection times' are in early 1980s

P. Gleckler, LLNL Climate SFA Review

1980

1990

1995

Last year of L-length linear trend in signal

2000

2005